{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 保存与加载" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 与dict转换" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1, 29, 95, 40, 30, 13],\n", " [58, 43, 26, 78, 70, 61],\n", " [41, 18, 17, 57, 45, 29],\n", " [14, 55, 36, 82, 75, 43],\n", " [25, 40, 49, 5, 49, 57],\n", " [48, 61, 59, 1, 45, 88],\n", " [73, 53, 87, 33, 46, 37],\n", " [12, 12, 23, 82, 94, 8]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "使用指定data,index,columns的方式创建dataframe\n", "下面使用了ord和chr来遍历字母表\n", "\"\"\"\n", "index = [chr(i) for i in range(ord('a'), ord('a') + 8)]\n", "columns = ['duration', 'playtime', 'up', 'favorite', 'comment', 'share']\n", "df = pd.DataFrame(np.random.randint(1, 100, (len(index), len(columns))), index=index, columns=columns)\n", "df.values" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'a': {'duration': 1,\n", " 'playtime': 29,\n", " 'up': 95,\n", " 'favorite': 40,\n", " 'comment': 30,\n", " 'share': 13},\n", " 'b': {'duration': 58,\n", " 'playtime': 43,\n", " 'up': 26,\n", " 'favorite': 78,\n", " 'comment': 70,\n", " 'share': 61},\n", " 'c': {'duration': 41,\n", " 'playtime': 18,\n", " 'up': 17,\n", " 'favorite': 57,\n", " 'comment': 45,\n", " 'share': 29},\n", " 'd': {'duration': 14,\n", " 'playtime': 55,\n", " 'up': 36,\n", " 'favorite': 82,\n", " 'comment': 75,\n", " 'share': 43},\n", " 'e': {'duration': 25,\n", " 'playtime': 40,\n", " 'up': 49,\n", " 'favorite': 5,\n", " 'comment': 49,\n", " 'share': 57},\n", " 'f': {'duration': 48,\n", " 'playtime': 61,\n", " 'up': 59,\n", " 'favorite': 1,\n", " 'comment': 45,\n", " 'share': 88},\n", " 'g': {'duration': 73,\n", " 'playtime': 53,\n", " 'up': 87,\n", " 'favorite': 33,\n", " 'comment': 46,\n", " 'share': 37},\n", " 'h': {'duration': 12,\n", " 'playtime': 12,\n", " 'up': 23,\n", " 'favorite': 82,\n", " 'comment': 94,\n", " 'share': 8}}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# df -> dict\n", "data_dict = df.to_dict(orient='index')\n", "data_dict" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
durationplaytimeupfavoritecommentshare
a12995403013
b584326787061
c411817574529
d145536827543
e25404954957
f48615914588
g735387334637
h12122382948
\n", "
" ], "text/plain": [ " duration playtime up favorite comment share\n", "a 1 29 95 40 30 13\n", "b 58 43 26 78 70 61\n", "c 41 18 17 57 45 29\n", "d 14 55 36 82 75 43\n", "e 25 40 49 5 49 57\n", "f 48 61 59 1 45 88\n", "g 73 53 87 33 46 37\n", "h 12 12 23 82 94 8" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# dict -> df\n", "df_dict = pd.DataFrame.from_dict(data_dict, orient='index')\n", "df_dict" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## csv文件" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# 存储为csv文件\n", "df.to_csv('sample.csv')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1, 29, 95, 40, 30, 13],\n", " [58, 43, 26, 78, 70, 61],\n", " [41, 18, 17, 57, 45, 29],\n", " [14, 55, 36, 82, 75, 43],\n", " [25, 40, 49, 5, 49, 57],\n", " [48, 61, 59, 1, 45, 88],\n", " [73, 53, 87, 33, 46, 37],\n", " [12, 12, 23, 82, 94, 8]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 需要指定index_col=0\n", "df_csv = pd.read_csv('sample.csv', index_col=0)\n", "df_csv.values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## excel文件" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "df.to_excel('sample.xlsx')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0durationplaytimeupfavoritecommentshare
0a12995403013
1b584326787061
2c411817574529
3d145536827543
4e25404954957
5f48615914588
6g735387334637
7h12122382948
\n", "
" ], "text/plain": [ " Unnamed: 0 duration playtime up favorite comment share\n", "0 a 1 29 95 40 30 13\n", "1 b 58 43 26 78 70 61\n", "2 c 41 18 17 57 45 29\n", "3 d 14 55 36 82 75 43\n", "4 e 25 40 49 5 49 57\n", "5 f 48 61 59 1 45 88\n", "6 g 73 53 87 33 46 37\n", "7 h 12 12 23 82 94 8" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 若不指定index_col=0,会多出一行'Unnamed: 0'\n", "df_excel = pd.read_excel('sample.xlsx')\n", "df_excel" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }